Source code for kedro.framework.session.session

# pylint: disable=invalid-name,global-statement
"""This module implements Kedro session responsible for project lifecycle."""
import logging
import logging.config
import os
import subprocess
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, Iterable, Optional, Union

import click

from kedro import __version__ as kedro_version
from kedro.framework.context import KedroContext
from kedro.framework.context.context import (
    KedroContextError,
    _convert_paths_to_absolute_posix,
)
from kedro.framework.hooks import get_hook_manager
from kedro.framework.project import (
    configure_project,
    pipelines,
    settings,
    validate_settings,
)
from kedro.framework.session.store import BaseSessionStore
from kedro.io.core import generate_timestamp
from kedro.runner import AbstractRunner, SequentialRunner

_active_session = None


[docs]def get_current_session(silent: bool = False) -> Optional["KedroSession"]: """Fetch the active ``KedroSession`` instance. Args: silent: Indicates to suppress the error if no active session was found. Raises: RuntimeError: If no active session was found and `silent` is False. Returns: KedroSession instance. """ if not _active_session and not silent: raise RuntimeError("There is no active Kedro session.") return _active_session
def _activate_session(session: "KedroSession", force: bool = False) -> None: global _active_session if _active_session and not force and session is not _active_session: raise RuntimeError( "Cannot activate the session as another active session already exists." ) _active_session = session def _deactivate_session() -> None: global _active_session _active_session = None def _describe_git(project_path: Path) -> Dict[str, Dict[str, str]]: project_path = str(project_path) try: res = subprocess.check_output( ["git", "rev-parse", "--short", "HEAD"], cwd=project_path ) # `subprocess.check_output()` raises `NotADirectoryError` on Windows except (subprocess.CalledProcessError, FileNotFoundError, NotADirectoryError): logging.getLogger(__name__).warning("Unable to git describe %s", project_path) return {} git_data = {"commit_sha": res.decode().strip()} res = subprocess.check_output(["git", "status", "--short"], cwd=project_path) git_data["dirty"] = bool(res.decode().strip()) return {"git": git_data} def _jsonify_cli_context(ctx: click.core.Context) -> Dict[str, Any]: return { "args": ctx.args, "params": ctx.params, "command_name": ctx.command.name, "command_path": ctx.command_path, }
[docs]class KedroSession: """``KedroSession`` is the object that is responsible for managing the lifecycle of a Kedro run. - Use `KedroSession.create("<your-kedro-project-package-name>")` as a context manager to construct a new KedroSession with session data provided (see the example below). - Use `KedroSession(session_id=<id>)` to instantiate an existing session with a given ID. Example: :: >>> from kedro.framework.session import KedroSession >>> >>> with KedroSession.create("<your-kedro-project-package-name>") as session: >>> session.run() >>> """ def __init__( self, session_id: str, package_name: str = None, project_path: Union[Path, str] = None, save_on_close: bool = False, ): self._project_path = Path(project_path or Path.cwd()).resolve() self.session_id = session_id self.save_on_close = save_on_close self._package_name = package_name self._store = self._init_store()
[docs] @classmethod def create( # pylint: disable=too-many-arguments cls, package_name: str = None, project_path: Union[Path, str] = None, save_on_close: bool = True, env: str = None, extra_params: Dict[str, Any] = None, ) -> "KedroSession": """Create a new instance of ``KedroSession`` with the session data. Args: package_name: Package name for the Kedro project the session is created for. project_path: Path to the project root directory. Default is current working directory Path.cwd(). save_on_close: Whether or not to save the session when it's closed. env: Environment for the KedroContext. extra_params: Optional dictionary containing extra project parameters for underlying KedroContext. If specified, will update (and therefore take precedence over) the parameters retrieved from the project configuration. Returns: A new ``KedroSession`` instance. """ # This is to make sure that for workflows that manually create session # without going through one of our known entrypoints, e.g. some plugins # like kedro-airflow, the project is still properly configured. This # is for backward compatibility and should be removed in 0.18. if package_name is not None: configure_project(package_name) validate_settings() session = cls( package_name=package_name, project_path=project_path, session_id=generate_timestamp(), save_on_close=save_on_close, ) # have to explicitly type session_data otherwise mypy will complain # possibly related to this: https://github.com/python/mypy/issues/1430 session_data: Dict[str, Any] = { "package_name": session._package_name, "project_path": session._project_path, "session_id": session.session_id, **_describe_git(session._project_path), } ctx = click.get_current_context(silent=True) if ctx: session_data["cli"] = _jsonify_cli_context(ctx) env = env or os.getenv("KEDRO_ENV") if env: session_data["env"] = env if extra_params: session_data["extra_params"] = extra_params session._store.update(session_data) # we need a ConfigLoader registered in order to be able to set up logging session._setup_logging() return session
def _get_logging_config(self) -> Dict[str, Any]: context = self.load_context() conf_logging = context.config_loader.get( "logging*", "logging*/**", "**/logging*" ) # turn relative paths in logging config into absolute path # before initialising loggers conf_logging = _convert_paths_to_absolute_posix( project_path=self._project_path, conf_dictionary=conf_logging ) return conf_logging def _setup_logging(self) -> None: """Register logging specified in logging directory.""" conf_logging = self._get_logging_config() logging.config.dictConfig(conf_logging) def _init_store(self) -> BaseSessionStore: store_class = settings.SESSION_STORE_CLASS classpath = f"{store_class.__module__}.{store_class.__qualname__}" store_args = deepcopy(settings.SESSION_STORE_ARGS) store_args.setdefault("path", (self._project_path / "sessions").as_posix()) store_args["session_id"] = self.session_id try: return store_class(**store_args) except TypeError as err: raise ValueError( f"\n{err}.\nStore config must only contain arguments valid " f"for the constructor of `{classpath}`." ) from err except Exception as err: raise ValueError( f"\n{err}.\nFailed to instantiate session store of type `{classpath}`." ) from err def _log_exception(self, exc_type, exc_value, exc_tb): type_ = [] if exc_type.__module__ == "builtins" else [exc_type.__module__] type_.append(exc_type.__qualname__) exc_data = { "type": ".".join(type_), "value": str(exc_value), "traceback": traceback.format_tb(exc_tb), } self._store["exception"] = exc_data @property def _logger(self) -> logging.Logger: return logging.getLogger(__name__) @property def store(self) -> Dict[str, Any]: """Return a copy of internal store.""" return dict(self._store)
[docs] def load_context(self) -> KedroContext: """An instance of the project context.""" env = self.store.get("env") extra_params = self.store.get("extra_params") context_class = settings.CONTEXT_CLASS context = context_class( package_name=self._package_name, project_path=self._project_path, env=env, extra_params=extra_params, ) return context
[docs] def close(self): """Close the current session and save its store to disk if `save_on_close` attribute is True. """ if self.save_on_close: self._store.save() if get_current_session(silent=True) is self: _deactivate_session()
def __enter__(self): if get_current_session(silent=True) is not self: _activate_session(self) return self def __exit__(self, exc_type, exc_value, tb_): if exc_type: self._log_exception(exc_type, exc_value, tb_) self.close()
[docs] def run( # pylint: disable=too-many-arguments,too-many-locals self, pipeline_name: str = None, tags: Iterable[str] = None, runner: AbstractRunner = None, node_names: Iterable[str] = None, from_nodes: Iterable[str] = None, to_nodes: Iterable[str] = None, from_inputs: Iterable[str] = None, to_outputs: Iterable[str] = None, load_versions: Dict[str, str] = None, ) -> Dict[str, Any]: """Runs the pipeline with a specified runner. Args: pipeline_name: Name of the pipeline that is being run. tags: An optional list of node tags which should be used to filter the nodes of the ``Pipeline``. If specified, only the nodes containing *any* of these tags will be run. runner: An optional parameter specifying the runner that you want to run the pipeline with. node_names: An optional list of node names which should be used to filter the nodes of the ``Pipeline``. If specified, only the nodes with these names will be run. from_nodes: An optional list of node names which should be used as a starting point of the new ``Pipeline``. to_nodes: An optional list of node names which should be used as an end point of the new ``Pipeline``. from_inputs: An optional list of input datasets which should be used as a starting point of the new ``Pipeline``. to_outputs: An optional list of output datasets which should be used as an end point of the new ``Pipeline``. load_versions: An optional flag to specify a particular dataset version timestamp to load. Raises: KedroContextError: If the named or `__default__` pipeline is not defined by `register_pipelines`. Exception: Any uncaught exception during the run will be re-raised after being passed to ``on_pipeline_error`` hook. Returns: Any node outputs that cannot be processed by the ``DataCatalog``. These are returned in a dictionary, where the keys are defined by the node outputs. """ # pylint: disable=protected-access,no-member # Report project name self._logger.info("** Kedro project %s", self._project_path.name) save_version = run_id = self.store["session_id"] extra_params = self.store.get("extra_params") or {} context = self.load_context() name = pipeline_name or "__default__" try: pipeline = pipelines[name] except KeyError as exc: raise KedroContextError( f"Failed to find the pipeline named '{name}'. " f"It needs to be generated and returned " f"by the 'register_pipelines' function." ) from exc filtered_pipeline = context._filter_pipeline( pipeline=pipeline, tags=tags, from_nodes=from_nodes, to_nodes=to_nodes, node_names=node_names, from_inputs=from_inputs, to_outputs=to_outputs, ) record_data = { "run_id": run_id, "project_path": self._project_path.as_posix(), "env": context.env, "kedro_version": kedro_version, "tags": tags, "from_nodes": from_nodes, "to_nodes": to_nodes, "node_names": node_names, "from_inputs": from_inputs, "to_outputs": to_outputs, "load_versions": load_versions, "extra_params": extra_params, "pipeline_name": pipeline_name, } catalog = context._get_catalog( save_version=save_version, load_versions=load_versions ) # Run the runner runner = runner or SequentialRunner() hook_manager = get_hook_manager() hook_manager.hook.before_pipeline_run( # pylint: disable=no-member run_params=record_data, pipeline=filtered_pipeline, catalog=catalog ) try: run_result = runner.run(filtered_pipeline, catalog, run_id) except Exception as error: hook_manager.hook.on_pipeline_error( error=error, run_params=record_data, pipeline=filtered_pipeline, catalog=catalog, ) raise hook_manager.hook.after_pipeline_run( run_params=record_data, run_result=run_result, pipeline=filtered_pipeline, catalog=catalog, ) return run_result