Source code for kedro.extras.datasets.spark.spark_dataset

"""``AbstractVersionedDataSet`` implementation to access Spark dataframes using
import json
from copy import deepcopy
from fnmatch import fnmatch
from functools import partial
from pathlib import PurePosixPath
from typing import Any, Dict, List, Optional, Tuple
from warnings import warn

import fsspec
from hdfs import HdfsError, InsecureClient
from pyspark.sql import DataFrame, SparkSession
from pyspark.sql.types import StructType
from pyspark.sql.utils import AnalysisException
from s3fs import S3FileSystem

from import (

# NOTE: kedro.extras.datasets will be removed in Kedro 0.19.0.
# Any contribution to datasets should be made in kedro-datasets
# in kedro-plugins (

def _parse_glob_pattern(pattern: str) -> str:
    special = ("*", "?", "[")
    clean = []
    for part in pattern.split("/"):
        if any(char in part for char in special):
    return "/".join(clean)

def _split_filepath(filepath: str) -> Tuple[str, str]:
    split_ = filepath.split("://", 1)
    if len(split_) == 2:
        return split_[0] + "://", split_[1]
    return "", split_[0]

def _strip_dbfs_prefix(path: str, prefix: str = "/dbfs") -> str:
    return path[len(prefix) :] if path.startswith(prefix) else path

def _dbfs_glob(pattern: str, dbutils: Any) -> List[str]:
    """Perform a custom glob search in DBFS using the provided pattern.
    It is assumed that version paths are managed by Kedro only.

        pattern: Glob pattern to search for.
        dbutils: dbutils instance to operate with DBFS.

            List of DBFS paths prefixed with '/dbfs' that satisfy the glob pattern.
    pattern = _strip_dbfs_prefix(pattern)
    prefix = _parse_glob_pattern(pattern)
    matched = set()
    filename = pattern.split("/")[-1]

    for file_info in
        if file_info.isDir():
            path = str(
                PurePosixPath(_strip_dbfs_prefix(file_info.path, "dbfs:")) / filename
            if fnmatch(path, pattern):
                path = "/dbfs" + path
    return sorted(matched)

def _get_dbutils(spark: SparkSession) -> Optional[Any]:
    """Get the instance of 'dbutils' or None if the one could not be found."""
    dbutils = globals().get("dbutils")
    if dbutils:
        return dbutils

        from pyspark.dbutils import DBUtils  # pylint: disable=import-outside-toplevel

        dbutils = DBUtils(spark)
    except ImportError:
            import IPython  # pylint: disable=import-outside-toplevel
        except ImportError:
            ipython = IPython.get_ipython()
            dbutils = ipython.user_ns.get("dbutils") if ipython else None

    return dbutils

def _dbfs_exists(pattern: str, dbutils: Any) -> bool:
    """Perform an `ls` list operation in DBFS using the provided pattern.
    It is assumed that version paths are managed by Kedro.
    Broad `Exception` is present due to `dbutils.fs.ExecutionError` that
    cannot be imported directly.
        pattern: Filepath to search for.
        dbutils: dbutils instance to operate with DBFS.
        Boolean value if filepath exists.
    pattern = _strip_dbfs_prefix(pattern)
    file = _parse_glob_pattern(pattern)
        return True
    except Exception:  # pylint: disable=broad-except
        return False

class KedroHdfsInsecureClient(InsecureClient):
    """Subclasses ``hdfs.InsecureClient`` and implements ``hdfs_exists``
    and ``hdfs_glob`` methods required by ``SparkDataSet``"""

    def hdfs_exists(self, hdfs_path: str) -> bool:
        """Determines whether given ``hdfs_path`` exists in HDFS.

            hdfs_path: Path to check.

            True if ``hdfs_path`` exists in HDFS, False otherwise.
        return bool(self.status(hdfs_path, strict=False))

    def hdfs_glob(self, pattern: str) -> List[str]:
        """Perform a glob search in HDFS using the provided pattern.

            pattern: Glob pattern to search for.

            List of HDFS paths that satisfy the glob pattern.
        prefix = _parse_glob_pattern(pattern) or "/"
        matched = set()
            for dpath, _, fnames in self.walk(prefix):
                if fnmatch(dpath, pattern):
                matched |= {
                    for fname in fnames
                    if fnmatch(f"{dpath}/{fname}", pattern)
        except HdfsError:  # pragma: no cover
            # HdfsError is raised by `self.walk()` if prefix does not exist in HDFS.
            # Ignore and return an empty list.
        return sorted(matched)

[docs]class SparkDataSet(AbstractVersionedDataSet[DataFrame, DataFrame]): """``SparkDataSet`` loads and saves Spark dataframes. Example usage for the `YAML API <\ data_catalog.html#use-the-data-catalog-with-the-yaml-api>`_: .. code-block:: yaml weather: type: spark.SparkDataSet filepath: s3a://your_bucket/data/01_raw/weather/* file_format: csv load_args: header: True inferSchema: True save_args: sep: '|' header: True weather_with_schema: type: spark.SparkDataSet filepath: s3a://your_bucket/data/01_raw/weather/* file_format: csv load_args: header: True schema: filepath: path/to/schema.json save_args: sep: '|' header: True weather_cleaned: type: spark.SparkDataSet filepath: data/02_intermediate/data.parquet file_format: parquet Example usage for the `Python API <\ data_catalog.html#use-the-data-catalog-with-the-code-api>`_: :: >>> from pyspark.sql import SparkSession >>> from pyspark.sql.types import (StructField, StringType, >>> IntegerType, StructType) >>> >>> from kedro.extras.datasets.spark import SparkDataSet >>> >>> schema = StructType([StructField("name", StringType(), True), >>> StructField("age", IntegerType(), True)]) >>> >>> data = [('Alex', 31), ('Bob', 12), ('Clarke', 65), ('Dave', 29)] >>> >>> spark_df = SparkSession.builder.getOrCreate()\ >>> .createDataFrame(data, schema) >>> >>> data_set = SparkDataSet(filepath="test_data") >>> >>> reloaded = data_set.load() >>> >>> reloaded.take(4) """ # this dataset cannot be used with ``ParallelRunner``, # therefore it has the attribute ``_SINGLE_PROCESS = True`` # for parallelism within a Spark pipeline please consider # ``ThreadRunner`` instead _SINGLE_PROCESS = True DEFAULT_LOAD_ARGS = {} # type: Dict[str, Any] DEFAULT_SAVE_ARGS = {} # type: Dict[str, Any]
[docs] def __init__( # pylint: disable=too-many-arguments self, filepath: str, file_format: str = "parquet", load_args: Dict[str, Any] = None, save_args: Dict[str, Any] = None, version: Version = None, credentials: Dict[str, Any] = None, ) -> None: """Creates a new instance of ``SparkDataSet``. Args: filepath: Filepath in POSIX format to a Spark dataframe. When using Databricks and working with data written to mount path points, specify ``filepath``s for (versioned) ``SparkDataSet``s starting with ``/dbfs/mnt``. file_format: File format used during load and save operations. These are formats supported by the running SparkContext include parquet, csv, delta. For a list of supported formats please refer to Apache Spark documentation at load_args: Load args passed to Spark DataFrameReader load method. It is dependent on the selected file format. You can find a list of read options for each supported format in Spark DataFrame read documentation: save_args: Save args passed to Spark DataFrame write options. Similar to load_args this is dependent on the selected file format. You can pass ``mode`` and ``partitionBy`` to specify your overwrite mode and partitioning respectively. You can find a list of options for each format in Spark DataFrame write documentation: version: If specified, should be an instance of ````. If its ``load`` attribute is None, the latest version will be loaded. If its ``save`` attribute is None, save version will be autogenerated. credentials: Credentials to access the S3 bucket, such as ``key``, ``secret``, if ``filepath`` prefix is ``s3a://`` or ``s3n://``. Optional keyword arguments passed to ``hdfs.client.InsecureClient`` if ``filepath`` prefix is ``hdfs://``. Ignored otherwise. """ credentials = deepcopy(credentials) or {} fs_prefix, filepath = _split_filepath(filepath) exists_function = None glob_function = None if fs_prefix in ("s3a://", "s3n://"): if fs_prefix == "s3n://": warn( "'s3n' filesystem has now been deprecated by Spark, " "please consider switching to 's3a'", DeprecationWarning, ) _s3 = S3FileSystem(**credentials) exists_function = _s3.exists glob_function = partial(_s3.glob, refresh=True) path = PurePosixPath(filepath) elif fs_prefix == "hdfs://" and version: warn( f"HDFS filesystem support for versioned {self.__class__.__name__} is " f"in beta and uses 'hdfs.client.InsecureClient', please use with " f"caution" ) # default namenode address credentials.setdefault("url", "http://localhost:9870") credentials.setdefault("user", "hadoop") _hdfs_client = KedroHdfsInsecureClient(**credentials) exists_function = _hdfs_client.hdfs_exists glob_function = _hdfs_client.hdfs_glob # type: ignore path = PurePosixPath(filepath) else: path = PurePosixPath(filepath) if filepath.startswith("/dbfs"): dbutils = _get_dbutils(self._get_spark()) if dbutils: glob_function = partial(_dbfs_glob, dbutils=dbutils) exists_function = partial(_dbfs_exists, dbutils=dbutils) super().__init__( filepath=path, version=version, exists_function=exists_function, glob_function=glob_function, ) # Handle default load and save arguments self._load_args = deepcopy(self.DEFAULT_LOAD_ARGS) if load_args is not None: self._load_args.update(load_args) self._save_args = deepcopy(self.DEFAULT_SAVE_ARGS) if save_args is not None: self._save_args.update(save_args) # Handle schema load argument self._schema = self._load_args.pop("schema", None) if self._schema is not None: if isinstance(self._schema, dict): self._schema = self._load_schema_from_file(self._schema) self._file_format = file_format self._fs_prefix = fs_prefix self._handle_delta_format()
@staticmethod def _load_schema_from_file(schema: Dict[str, Any]) -> StructType: filepath = schema.get("filepath") if not filepath: raise DataSetError( "Schema load argument does not specify a 'filepath' attribute. Please" "include a path to a JSON-serialised 'pyspark.sql.types.StructType'." ) credentials = deepcopy(schema.get("credentials")) or {} protocol, schema_path = get_protocol_and_path(filepath) file_system = fsspec.filesystem(protocol, **credentials) pure_posix_path = PurePosixPath(schema_path) load_path = get_filepath_str(pure_posix_path, protocol) # Open schema file with as fs_file: try: return StructType.fromJson(json.loads( except Exception as exc: raise DataSetError( f"Contents of 'schema.filepath' ({schema_path}) are invalid. Please" f"provide a valid JSON-serialised 'pyspark.sql.types.StructType'." ) from exc def _describe(self) -> Dict[str, Any]: return dict( filepath=self._fs_prefix + str(self._filepath), file_format=self._file_format, load_args=self._load_args, save_args=self._save_args, version=self._version, ) @staticmethod def _get_spark(): return SparkSession.builder.getOrCreate() def _load(self) -> DataFrame: load_path = _strip_dbfs_prefix(self._fs_prefix + str(self._get_load_path())) read_obj = self._get_spark().read # Pass schema if defined if self._schema: read_obj = read_obj.schema(self._schema) return read_obj.load(load_path, self._file_format, **self._load_args) def _save(self, data: DataFrame) -> None: save_path = _strip_dbfs_prefix(self._fs_prefix + str(self._get_save_path())), self._file_format, **self._save_args) def _exists(self) -> bool: load_path = _strip_dbfs_prefix(self._fs_prefix + str(self._get_load_path())) try: self._get_spark().read.load(load_path, self._file_format) except AnalysisException as exception: if ( exception.desc.startswith("Path does not exist:") or "is not a Delta table" in exception.desc ): return False raise return True def _handle_delta_format(self) -> None: supported_modes = {"append", "overwrite", "error", "errorifexists", "ignore"} write_mode = self._save_args.get("mode") if ( write_mode and self._file_format == "delta" and write_mode not in supported_modes ): raise DataSetError( f"It is not possible to perform 'save()' for file format 'delta' " f"with mode '{write_mode}' on 'SparkDataSet'. " f"Please use 'spark.DeltaTableDataSet' instead." )