Source code for kedro.framework.context.context

# Copyright 2021 QuantumBlack Visual Analytics Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
# NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS
# BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo
# (either separately or in combination, "QuantumBlack Trademarks") are
# trademarks of QuantumBlack. The License does not grant you any right or
# license to the QuantumBlack Trademarks. You may not use the QuantumBlack
# Trademarks or any confusingly similar mark as a trademark for your product,
# or use the QuantumBlack Trademarks in any other manner that might cause
# confusion in the marketplace, including but not limited to in advertising,
# on websites, or on software.
#
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module provides context for Kedro project."""

import functools
import logging
import os
from copy import deepcopy
from pathlib import Path, PurePosixPath, PureWindowsPath
from typing import Any, Dict, Iterable, Union
from urllib.parse import urlparse
from warnings import warn

from kedro.config import ConfigLoader, MissingConfigException
from kedro.framework.hooks import get_hook_manager
from kedro.framework.project import pipelines, settings
from kedro.framework.startup import _get_project_metadata
from kedro.io import DataCatalog
from kedro.io.core import generate_timestamp
from kedro.pipeline import Pipeline
from kedro.pipeline.pipeline import _transcode_split
from kedro.runner.runner import AbstractRunner
from kedro.runner.sequential_runner import SequentialRunner
from kedro.versioning import Journal


def _deprecate(version):
    """Decorator to deprecate a few of the context's properties
    """

    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            property_name = func.__name__
            warn(
                f"Accessing {property_name} via the context will be deprecated in Kedro {version}.",
                DeprecationWarning,
            )
            return func(*args, **kwargs)

        return wrapper

    return decorator


def _is_relative_path(path_string: str) -> bool:
    """Checks whether a path string is a relative path.

    Example:
    ::
        >>> _is_relative_path("data/01_raw") == True
        >>> _is_relative_path("logs/info.log") == True
        >>> _is_relative_path("/tmp/data/01_raw") == False
        >>> _is_relative_path(r"C:\\logs\\info.log") == False
        >>> _is_relative_path(r"\\logs\\'info.log") == False
        >>> _is_relative_path("c:/logs/info.log") == False
        >>> _is_relative_path("s3://logs/info.log") == False

    Args:
        path_string: The path string to check.
    Returns:
        Whether the string is a relative path.
    """
    # os.path.splitdrive does not reliably work on non-Windows systems
    # breaking the coverage, using PureWindowsPath instead
    is_full_windows_path_with_drive = bool(PureWindowsPath(path_string).drive)
    if is_full_windows_path_with_drive:
        return False

    is_remote_path = bool(urlparse(path_string).scheme)
    if is_remote_path:
        return False

    is_absolute_path = PurePosixPath(path_string).is_absolute()
    if is_absolute_path:
        return False

    return True


def _convert_paths_to_absolute_posix(
    project_path: Path, conf_dictionary: Dict[str, Any]
) -> Dict[str, Any]:
    """Turn all relative paths inside ``conf_dictionary`` into absolute paths by appending them
    to ``project_path`` and convert absolute Windows paths to POSIX format. This is a hack to
    make sure that we don't have to change user's working directory for logging and datasets to
    work. It is important for non-standard workflows such as IPython notebook where users don't go
    through `kedro run` or `__main__.py` entrypoints.

    Example:
    ::
        >>> conf = _convert_paths_to_absolute_posix(
        >>>     project_path=Path("/path/to/my/project"),
        >>>     conf_dictionary={
        >>>         "handlers": {
        >>>             "info_file_handler": {
        >>>                 "filename": "logs/info.log"
        >>>             }
        >>>         }
        >>>     }
        >>> )
        >>> print(conf['handlers']['info_file_handler']['filename'])
        "/path/to/my/project/logs/info.log"

    Args:
        project_path: The root directory to prepend to relative path to make absolute path.
        conf_dictionary: The configuration containing paths to expand.
    Returns:
        A dictionary containing only absolute paths.
    Raises:
        ValueError: If the provided ``project_path`` is not an absolute path.
    """
    if not project_path.is_absolute():
        raise ValueError(
            f"project_path must be an absolute path. Received: {project_path}"
        )

    # only check a few conf keys that are known to specify a path string as value
    conf_keys_with_filepath = ("filename", "filepath", "path")

    for conf_key, conf_value in conf_dictionary.items():

        # if the conf_value is another dictionary, absolutify its paths first.
        if isinstance(conf_value, dict):
            conf_dictionary[conf_key] = _convert_paths_to_absolute_posix(
                project_path, conf_value
            )
            continue

        # if the conf_value is not a dictionary nor a string, skip
        if not isinstance(conf_value, str):
            continue

        # if the conf_value is a string but the conf_key isn't one associated with filepath, skip
        if conf_key not in conf_keys_with_filepath:
            continue

        if _is_relative_path(conf_value):
            # Absolute local path should be in POSIX format
            conf_value_absolute_path = (project_path / conf_value).as_posix()
            conf_dictionary[conf_key] = conf_value_absolute_path
        elif PureWindowsPath(conf_value).drive:
            # Convert absolute Windows path to POSIX format
            conf_dictionary[conf_key] = PureWindowsPath(conf_value).as_posix()

    return conf_dictionary


def _validate_layers_for_transcoding(catalog: DataCatalog) -> None:
    """Check that transcoded names that correspond to
    the same dataset also belong to the same layer.
    """

    def _find_conflicts():
        base_names_to_layer = {}
        for current_layer, dataset_names in catalog.layers.items():
            for name in dataset_names:
                base_name, _ = _transcode_split(name)
                known_layer = base_names_to_layer.setdefault(base_name, current_layer)
                if current_layer != known_layer:
                    yield name
                else:
                    base_names_to_layer[base_name] = current_layer

    conflicting_datasets = sorted(_find_conflicts())
    if conflicting_datasets:
        error_str = ", ".join(conflicting_datasets)
        raise ValueError(
            f"Transcoded datasets should have the same layer. Mismatch found for: {error_str}"
        )


[docs]class KedroContext: """``KedroContext`` is the base class which holds the configuration and Kedro's main functionality. """ _CONF_ROOT = "conf" """CONF_ROOT: Name of root directory containing project configuration. Default name is "conf"."""
[docs] def __init__( self, package_name: str, project_path: Union[Path, str], env: str = None, extra_params: Dict[str, Any] = None, ): """Create a context object by providing the root of a Kedro project and the environment configuration subfolders (see ``kedro.config.ConfigLoader``) Raises: KedroContextError: If there is a mismatch between Kedro project version and package version. Args: package_name: Package name for the Kedro project the context is created for. project_path: Project path to define the context for. env: Optional argument for configuration default environment to be used for running the pipeline. If not specified, it defaults to "local". extra_params: Optional dictionary containing extra project parameters. If specified, will update (and therefore take precedence over) the parameters retrieved from the project configuration. """ self._project_path = Path(project_path).expanduser().resolve() self._package_name = package_name self._env = env or "local" self._extra_params = deepcopy(extra_params)
@property # type: ignore @_deprecate(version="0.18.0") def CONF_ROOT(self) -> str: # pylint: disable=invalid-name """Deprecated in favour of settings.CONF_ROOT Returns: The root directory of the configuration directory of the project. Raises: DeprecationWarning """ return self._CONF_ROOT @CONF_ROOT.setter # type: ignore @_deprecate(version="0.18.0") def CONF_ROOT(self, value: str) -> None: # pylint: disable=invalid-name """Deprecated in favour of settings.CONF_ROOT Raises: DeprecationWarning """ self._CONF_ROOT = value # pylint: disable=invalid-name @property # type: ignore def env(self) -> str: """Property for the current Kedro environment. Returns: Name of the current Kedro environment. """ return self._env @property # type: ignore @_deprecate(version="0.18.0") def package_name(self) -> str: """Property for Kedro project package name. Returns: Name of Kedro project package. """ return self._package_name @property # type: ignore @_deprecate(version="0.18.0") def pipeline(self) -> Pipeline: """Read-only property for an instance of Pipeline. Returns: Default pipeline. Raises: KedroContextError: If the `__default__` pipeline is not defined by `register_pipelines`. """ try: return pipelines["__default__"] except (TypeError, KeyError) as exc: # pragma: no cover raise KedroContextError( "Failed to find the pipeline named '__default__'. " "It needs to be generated and returned " "by the 'register_pipelines' function." ) from exc @property # type: ignore @_deprecate(version="0.18.0") def pipelines(self) -> Dict[str, Pipeline]: """Read-only property for an instance of Pipeline. Returns: A dictionary of defined pipelines. """ return dict(pipelines) @property def project_path(self) -> Path: """Read-only property containing Kedro's root project directory. Returns: Project directory. """ return self._project_path @property def catalog(self) -> DataCatalog: """Read-only property referring to Kedro's ``DataCatalog`` for this context. Returns: DataCatalog defined in `catalog.yml`. Raises: KedroContextError: Incorrect ``DataCatalog`` registered for the project. """ return self._get_catalog() @property def params(self) -> Dict[str, Any]: """Read-only property referring to Kedro's parameters for this context. Returns: Parameters defined in `parameters.yml` with the addition of any extra parameters passed at initialization. """ try: # '**/parameters*' reads modular pipeline configs params = self.config_loader.get( "parameters*", "parameters*/**", "**/parameters*" ) except MissingConfigException as exc: warn(f"Parameters not found in your Kedro project config.\n{str(exc)}") params = {} params.update(self._extra_params or {}) return params def _get_catalog( self, save_version: str = None, journal: Journal = None, load_versions: Dict[str, str] = None, ) -> DataCatalog: """A hook for changing the creation of a DataCatalog instance. Returns: DataCatalog defined in `catalog.yml`. Raises: KedroContextError: Incorrect ``DataCatalog`` registered for the project. """ # '**/catalog*' reads modular pipeline configs conf_catalog = self.config_loader.get("catalog*", "catalog*/**", "**/catalog*") # turn relative paths in conf_catalog into absolute paths # before initializing the catalog conf_catalog = _convert_paths_to_absolute_posix( project_path=self.project_path, conf_dictionary=conf_catalog ) conf_creds = self._get_config_credentials() hook_manager = get_hook_manager() catalog = hook_manager.hook.register_catalog( # pylint: disable=no-member catalog=conf_catalog, credentials=conf_creds, load_versions=load_versions, save_version=save_version, journal=journal, ) if not isinstance(catalog, DataCatalog): raise KedroContextError( f"Expected an instance of `DataCatalog`, " f"got `{type(catalog).__name__}` instead." ) feed_dict = self._get_feed_dict() catalog.add_feed_dict(feed_dict) if catalog.layers: _validate_layers_for_transcoding(catalog) hook_manager = get_hook_manager() hook_manager.hook.after_catalog_created( # pylint: disable=no-member catalog=catalog, conf_catalog=conf_catalog, conf_creds=conf_creds, feed_dict=feed_dict, save_version=save_version, load_versions=load_versions, run_id=self.run_id, ) return catalog @property # type: ignore @_deprecate(version="0.18.0") def io(self) -> DataCatalog: """Read-only alias property referring to Kedro's ``DataCatalog`` for this context. Returns: DataCatalog defined in `catalog.yml`. Raises: KedroContextError: Incorrect ``DataCatalog`` registered for the project. """ # pylint: disable=invalid-name return self.catalog def _get_config_loader(self) -> ConfigLoader: """A hook for changing the creation of a ConfigLoader instance. Returns: Instance of `ConfigLoader` created by `register_config_loader` hook. Raises: KedroContextError: Incorrect ``ConfigLoader`` registered for the project. """ conf_root = settings.CONF_ROOT conf_paths = [ str(self.project_path / conf_root / "base"), str(self.project_path / conf_root / self.env), ] hook_manager = get_hook_manager() config_loader = hook_manager.hook.register_config_loader( # pylint: disable=no-member conf_paths=conf_paths, env=self.env, extra_params=self._extra_params, ) if not isinstance(config_loader, ConfigLoader): raise KedroContextError( f"Expected an instance of `ConfigLoader`, " f"got `{type(config_loader).__name__}` instead." ) return config_loader @property def config_loader(self) -> ConfigLoader: """Read-only property referring to Kedro's ``ConfigLoader`` for this context. Returns: Instance of `ConfigLoader`. Raises: KedroContextError: Incorrect ``ConfigLoader`` registered for the project. """ return self._get_config_loader() def _get_feed_dict(self) -> Dict[str, Any]: """Get parameters and return the feed dictionary.""" params = self.params feed_dict = {"parameters": params} def _add_param_to_feed_dict(param_name, param_value): """This recursively adds parameter paths to the `feed_dict`, whenever `param_value` is a dictionary itself, so that users can specify specific nested parameters in their node inputs. Example: >>> param_name = "a" >>> param_value = {"b": 1} >>> _add_param_to_feed_dict(param_name, param_value) >>> assert feed_dict["params:a"] == {"b": 1} >>> assert feed_dict["params:a.b"] == 1 """ key = f"params:{param_name}" feed_dict[key] = param_value if isinstance(param_value, dict): for key, val in param_value.items(): _add_param_to_feed_dict(f"{param_name}.{key}", val) for param_name, param_value in params.items(): _add_param_to_feed_dict(param_name, param_value) return feed_dict def _get_config_credentials(self) -> Dict[str, Any]: """Getter for credentials specified in credentials directory.""" try: conf_creds = self.config_loader.get( "credentials*", "credentials*/**", "**/credentials*" ) except MissingConfigException as exc: warn(f"Credentials not found in your Kedro project config.\n{str(exc)}") conf_creds = {} return conf_creds # pylint: disable=too-many-arguments, no-self-use def _filter_pipeline( self, pipeline: Pipeline, tags: Iterable[str] = None, from_nodes: Iterable[str] = None, to_nodes: Iterable[str] = None, node_names: Iterable[str] = None, from_inputs: Iterable[str] = None, to_outputs: Iterable[str] = None, ) -> Pipeline: """Filter the pipeline as the intersection of all conditions.""" new_pipeline = pipeline # We need to intersect with the pipeline because the order # of operations matters, so we don't want to do it incrementally. # As an example, with a pipeline of nodes 1,2,3, think of # "from 1", and "only 1 and 3" - the order you do them in results in # either 1 & 3, or just 1. if tags: new_pipeline &= pipeline.only_nodes_with_tags(*tags) if not new_pipeline.nodes: raise KedroContextError( f"Pipeline contains no nodes with tags: {str(tags)}" ) if from_nodes: new_pipeline &= pipeline.from_nodes(*from_nodes) if to_nodes: new_pipeline &= pipeline.to_nodes(*to_nodes) if node_names: new_pipeline &= pipeline.only_nodes(*node_names) if from_inputs: new_pipeline &= pipeline.from_inputs(*from_inputs) if to_outputs: new_pipeline &= pipeline.to_outputs(*to_outputs) if not new_pipeline.nodes: raise KedroContextError("Pipeline contains no nodes") return new_pipeline @property def run_id(self) -> Union[None, str]: """Unique identifier for a run / journal record, defaults to None. If `run_id` is None, `save_version` will be used instead. """ return self._get_run_id()
[docs] def run( # pylint: disable=too-many-arguments,too-many-locals self, tags: Iterable[str] = None, runner: AbstractRunner = None, node_names: Iterable[str] = None, from_nodes: Iterable[str] = None, to_nodes: Iterable[str] = None, from_inputs: Iterable[str] = None, to_outputs: Iterable[str] = None, load_versions: Dict[str, str] = None, pipeline_name: str = None, ) -> Dict[str, Any]: """Runs the pipeline with a specified runner. Args: tags: An optional list of node tags which should be used to filter the nodes of the ``Pipeline``. If specified, only the nodes containing *any* of these tags will be run. runner: An optional parameter specifying the runner that you want to run the pipeline with. node_names: An optional list of node names which should be used to filter the nodes of the ``Pipeline``. If specified, only the nodes with these names will be run. from_nodes: An optional list of node names which should be used as a starting point of the new ``Pipeline``. to_nodes: An optional list of node names which should be used as an end point of the new ``Pipeline``. from_inputs: An optional list of input datasets which should be used as a starting point of the new ``Pipeline``. to_outputs: An optional list of output datasets which should be used as an end point of the new ``Pipeline``. load_versions: An optional flag to specify a particular dataset version timestamp to load. pipeline_name: Name of the ``Pipeline`` to execute. Defaults to "__default__". Raises: KedroContextError: If the resulting ``Pipeline`` is empty or incorrect tags are provided. Exception: Any uncaught exception will be re-raised after being passed to``on_pipeline_error``. Returns: Any node outputs that cannot be processed by the ``DataCatalog``. These are returned in a dictionary, where the keys are defined by the node outputs. """ warn( "`kedro.framework.context.KedroContext.run` is now deprecated in favour of " "`KedroSession.run` and will be removed in Kedro 0.18.0.", DeprecationWarning, ) # Report project name logging.info("** Kedro project %s", self.project_path.name) name = pipeline_name or "__default__" try: pipeline = pipelines[name] except (TypeError, KeyError) as exc: raise KedroContextError( f"Failed to find the pipeline named '{name}'. " f"It needs to be generated and returned " f"by the 'register_pipelines' function." ) from exc filtered_pipeline = self._filter_pipeline( pipeline=pipeline, tags=tags, from_nodes=from_nodes, to_nodes=to_nodes, node_names=node_names, from_inputs=from_inputs, to_outputs=to_outputs, ) save_version = self._get_save_version() run_id = self.run_id or save_version record_data = { "run_id": run_id, "project_path": str(self.project_path), "env": self.env, "tags": tags, "from_nodes": from_nodes, "to_nodes": to_nodes, "node_names": node_names, "from_inputs": from_inputs, "to_outputs": to_outputs, "load_versions": load_versions, "pipeline_name": pipeline_name, "extra_params": self._extra_params, } journal = Journal(record_data) catalog = self._get_catalog( save_version=save_version, journal=journal, load_versions=load_versions ) # Run the runner runner = runner or SequentialRunner() hook_manager = get_hook_manager() hook_manager.hook.before_pipeline_run( # pylint: disable=no-member run_params=record_data, pipeline=filtered_pipeline, catalog=catalog ) try: run_result = runner.run(filtered_pipeline, catalog, run_id) except Exception as exc: hook_manager.hook.on_pipeline_error( # pylint: disable=no-member error=exc, run_params=record_data, pipeline=filtered_pipeline, catalog=catalog, ) raise exc hook_manager.hook.after_pipeline_run( # pylint: disable=no-member run_params=record_data, run_result=run_result, pipeline=filtered_pipeline, catalog=catalog, ) return run_result
def _get_run_id( self, *args, **kwargs # pylint: disable=unused-argument ) -> Union[None, str]: """A hook for generating a unique identifier for a run / journal record, defaults to None. If None, `save_version` will be used instead. """ return None def _get_save_version( self, *args, **kwargs # pylint: disable=unused-argument ) -> str: """Generate unique ID for dataset versioning, defaults to timestamp. `save_version` MUST be something that can be ordered, in order to easily determine the latest version. """ return generate_timestamp()
[docs]def load_context(project_path: Union[str, Path], **kwargs) -> KedroContext: """Loads the KedroContext object of a Kedro Project. This is the default way to load the KedroContext object for normal workflows such as CLI, Jupyter Notebook, Plugins, etc. It assumes the following project structure under the given project_path:: <project_path> |__ <src_dir> |__ pyproject.toml The name of the <scr_dir> is `src` by default. The `pyproject.toml` file is used for project metadata. Kedro configuration should be under `[tool.kedro]` section. Args: project_path: Path to the Kedro project. kwargs: Optional kwargs for ``KedroContext`` class. Returns: Instance of ``KedroContext`` class defined in Kedro project. Raises: KedroContextError: `pyproject.toml` was not found or the `[tool.kedro]` section is missing, or loaded context has package conflict. """ warn( "`kedro.framework.context.load_context` is now deprecated in favour of " "`KedroSession.load_context` and will be removed in Kedro 0.18.0.", DeprecationWarning, ) project_path = Path(project_path).expanduser().resolve() metadata = _get_project_metadata(project_path) context_class = settings.CONTEXT_CLASS # update kwargs with env from the environment variable # (defaults to None if not set) # need to do this because some CLI command (e.g `kedro run`) defaults to # passing in `env=None` kwargs["env"] = kwargs.get("env") or os.getenv("KEDRO_ENV") context = context_class( package_name=metadata.package_name, project_path=project_path, **kwargs ) return context
[docs]class KedroContextError(Exception): """Error occurred when loading project and running context pipeline."""