Source code for kedro.framework.project

"""``kedro.framework.project`` module provides utitlity to
configure a Kedro project and access its settings."""
# pylint: disable=redefined-outer-name,unused-argument,global-statement
import importlib
import logging.config
import operator
from import MutableMapping
from typing import Any, Dict, Optional

from dynaconf import LazySettings
from dynaconf.validator import ValidationError, Validator

from kedro.pipeline import Pipeline

def _get_default_class(class_import_path):
    module, _, class_name = class_import_path.rpartition(".")

    def validator_func(settings, validators):
        return getattr(importlib.import_module(module), class_name)

    return validator_func

class _IsSubclassValidator(Validator):
    """A validator to check if the supplied setting value is a subclass of the default class"""

    def validate(self, settings, *args, **kwargs):
        super().validate(settings, *args, **kwargs)

        default_class = self.default(settings, self)
        for name in self.names:
            setting_value = getattr(settings, name)
            if not issubclass(setting_value, default_class):
                raise ValidationError(
                    f"Invalid value `{setting_value.__module__}.{setting_value.__qualname__}` "
                    f"received for setting `{name}`. It must be a subclass of "

class _HasSharedParentClassValidator(Validator):
    """A validator to check that the parent of the default class is an ancestor of
    the settings value."""

    def validate(self, settings, *args, **kwargs):
        super().validate(settings, *args, **kwargs)

        default_class = self.default(settings, self)
        for name in self.names:
            setting_value = getattr(settings, name)
            # In the case of ConfigLoader, default_class.mro() will be:
            # [kedro.config.config.ConfigLoader,
            # kedro.config.abstract_config.AbstractConfigLoader,
            # abc.ABC,
            # object]
            # We pick out the direct parent and check if it's in any of the ancestors of
            # the supplied setting_value. This assumes that the direct parent is
            # the abstract class that must be inherited from.
            # A more general check just for a shared ancestor would be:
            # set(default_class.mro()) & set(setting_value.mro()) - {abc.ABC, object}
            default_class_parent = default_class.mro()[1]
            if default_class_parent not in setting_value.mro():
                raise ValidationError(
                    f"Invalid value `{setting_value.__module__}.{setting_value.__qualname__}` "
                    f"received for setting `{name}`. It must be a subclass of "

class _ProjectSettings(LazySettings):
    """Define all settings available for users to configure in Kedro,
    along with their validation rules and default values.
    Use Dynaconf's LazySettings as base.

    _CONF_SOURCE = Validator("CONF_SOURCE", default="conf")
    _HOOKS = Validator("HOOKS", default=tuple())
    _CONTEXT_CLASS = _IsSubclassValidator(
    _SESSION_STORE_CLASS = _IsSubclassValidator(
    _SESSION_STORE_ARGS = Validator("SESSION_STORE_ARGS", default={})
    _CONFIG_LOADER_CLASS = _HasSharedParentClassValidator(
        "CONFIG_LOADER_CLASS", default=_get_default_class("kedro.config.ConfigLoader")
    _CONFIG_LOADER_ARGS = Validator("CONFIG_LOADER_ARGS", default={})
    _DATA_CATALOG_CLASS = _IsSubclassValidator(
        "DATA_CATALOG_CLASS", default=_get_default_class("")

    def __init__(self, *args, **kwargs):

        super().__init__(*args, **kwargs)

def _load_data_wrapper(func):
    """Wrap a method in _ProjectPipelines so that data is loaded on first access.
    Taking inspiration from dynaconf.utils.functional.new_method_proxy
    # pylint: disable=protected-access
    def inner(self, *args, **kwargs):
        return func(self._content, *args, **kwargs)

    return inner

class _ProjectPipelines(MutableMapping):
    """A read-only lazy dictionary-like object to hold the project pipelines.
    On configure it will store the pipelines module.
    On first data access, e.g. through __getitem__, it will load the registered pipelines and merge
    them with pipelines defined from hooks.

    def __init__(self) -> None:
        self._pipelines_module: Optional[str] = None
        self._is_data_loaded = False
        self._content: Dict[str, Pipeline] = {}

    def _get_pipelines_registry_callable(pipelines_module: str):
        module_obj = importlib.import_module(pipelines_module)
        register_pipelines = getattr(module_obj, "register_pipelines")
        return register_pipelines

    def _load_data(self):
        """Lazily read pipelines defined in the pipelines registry module"""

        # If the pipelines dictionary has not been configured with a pipelines module
        # or if data has been loaded
        if self._pipelines_module is None or self._is_data_loaded:

        register_pipelines = self._get_pipelines_registry_callable(
        project_pipelines = register_pipelines()

        self._content = project_pipelines
        self._is_data_loaded = True

    def configure(self, pipelines_module: Optional[str] = None) -> None:
        """Configure the pipelines_module to load the pipelines dictionary.
        Reset the data loading state so that after every `configure` call,
        data are reloaded.
        self._pipelines_module = pipelines_module
        self._is_data_loaded = False
        self._content = {}

    # Dict-like interface
    __getitem__ = _load_data_wrapper(operator.getitem)
    __setitem__ = _load_data_wrapper(operator.setitem)
    __delitem__ = _load_data_wrapper(operator.delitem)
    __iter__ = _load_data_wrapper(iter)
    __len__ = _load_data_wrapper(len)

    # Presentation methods
    __repr__ = _load_data_wrapper(repr)
    __str__ = _load_data_wrapper(str)


settings = _ProjectSettings()

pipelines = _ProjectPipelines()

[docs]def configure_project(package_name: str): """Configure a Kedro project by populating its settings with values defined in user's and """ settings_module = f"{package_name}.settings" settings.configure(settings_module) pipelines_module = f"{package_name}.pipeline_registry" pipelines.configure(pipelines_module) # Once the project is successfully configured once, store PACKAGE_NAME as a # global variable to make it easily accessible. This is used by validate_settings() # below, and also by ParallelRunner on Windows, as package_name is required every # time a new subprocess is spawned. global PACKAGE_NAME PACKAGE_NAME = package_name
[docs]def configure_logging(logging_config: Dict[str, Any]) -> None: """Configure logging to make it available as a global variable.""" logging.config.dictConfig(logging_config) global LOGGING LOGGING = logging_config
[docs]def validate_settings(): """Eagerly validate that the settings module is importable. This is desirable to surface any syntax or import errors early. In particular, without eagerly importing the settings module, dynaconf would silence any import error (e.g. missing dependency, missing/mislabelled pipeline), and users would instead get a cryptic error message ``Expected an instance of `ConfigLoader`, got `NoneType` instead``. More info on the dynaconf issue: """ importlib.import_module(f"{PACKAGE_NAME}.settings")