kedro.extras.datasets.pandas.HDFDataSet¶
-
class
kedro.extras.datasets.pandas.
HDFDataSet
(filepath, key, load_args=None, save_args=None, version=None, credentials=None, fs_args=None)[source]¶ Bases:
kedro.io.core.AbstractVersionedDataSet
HDFDataSet
loads/saves data from/to a hdf file using an underlying filesystem (e.g. local, S3, GCS). It uses pandas.HDFStore to handle the hdf file.Example:
from kedro.extras.datasets.pandas import HDFDataSet import pandas as pd data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5], 'col3': [5, 6]}) # data_set = HDFDataSet(filepath="gcs://bucket/test.hdf", key='data') data_set = HDFDataSet(filepath="test.h5", key='data') data_set.save(data) reloaded = data_set.load() assert data.equals(reloaded)
Attributes
HDFDataSet.DEFAULT_LOAD_ARGS
HDFDataSet.DEFAULT_SAVE_ARGS
Methods
HDFDataSet.__init__
(filepath, key[, …])Creates a new instance of HDFDataSet
pointing to a concrete hdf file on a specific filesystem.HDFDataSet.exists
()Checks whether a data set’s output already exists by calling the provided _exists() method. HDFDataSet.from_config
(name, config[, …])Create a data set instance using the configuration provided. HDFDataSet.load
()Loads data by delegation to the provided load method. HDFDataSet.release
()Release any cached data. HDFDataSet.resolve_load_version
()Compute the version the dataset should be loaded with. HDFDataSet.resolve_save_version
()Compute the version the dataset should be saved with. HDFDataSet.save
(data)Saves data by delegation to the provided save method. -
DEFAULT_LOAD_ARGS
= {}¶
-
DEFAULT_SAVE_ARGS
= {}¶
-
__init__
(filepath, key, load_args=None, save_args=None, version=None, credentials=None, fs_args=None)[source]¶ Creates a new instance of
HDFDataSet
pointing to a concrete hdf file on a specific filesystem.Parameters: - filepath (
str
) – Filepath in POSIX format to a hdf file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
. Note: http(s) doesn’t support versioning. - key (
str
) – Identifier to the group in the HDF store. - load_args (
Optional
[Dict
[str
,Any
]]) – PyTables options for loading hdf files. You can find all available arguments at: https://www.pytables.org/usersguide/libref/top_level.html#tables.open_file All defaults are preserved. - save_args (
Optional
[Dict
[str
,Any
]]) – PyTables options for saving hdf files. You can find all available arguments at: https://www.pytables.org/usersguide/libref/top_level.html#tables.open_file All defaults are preserved. - version (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated. - credentials (
Optional
[Dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forGCSFileSystem
it should look like {“token”: None}. - fs_args (
Optional
[Dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
), as well as to pass to the filesystem’s open method through nested keys open_args_load and open_args_save. Here you can find all available arguments for open: https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open All defaults are preserved, except mode, which is set wb when saving.
Return type: None
- filepath (
-
exists
()¶ Checks whether a data set’s output already exists by calling the provided _exists() method.
Return type: bool
Returns: Flag indicating whether the output already exists. Raises: DataSetError
– when underlying exists method raises error.
-
classmethod
from_config
(name, config, load_version=None, save_version=None)¶ Create a data set instance using the configuration provided.
Parameters: - name (
str
) – Data set name. - config (
Dict
[str
,Any
]) – Data set config dictionary. - load_version (
Optional
[str
]) – Version string to be used forload
operation if the data set is versioned. Has no effect on the data set if versioning was not enabled. - save_version (
Optional
[str
]) – Version string to be used forsave
operation if the data set is versioned. Has no effect on the data set if versioning was not enabled.
Return type: AbstractDataSet
Returns: An instance of an
AbstractDataSet
subclass.Raises: DataSetError
– When the function fails to create the data set from its config.- name (
-
load
()¶ Loads data by delegation to the provided load method.
Return type: Any
Returns: Data returned by the provided load method. Raises: DataSetError
– When underlying load method raises error.
-
release
()¶ Release any cached data.
Raises: DataSetError
– when underlying release method raises error.Return type: None
-
resolve_load_version
()¶ Compute the version the dataset should be loaded with.
Return type: Optional
[str
]
-
resolve_save_version
()¶ Compute the version the dataset should be saved with.
Return type: Optional
[str
]
-
save
(data)¶ Saves data by delegation to the provided save method.
Parameters: data ( Any
) – the value to be saved by provided save method.Raises: DataSetError
– when underlying save method raises error.Return type: None
-