kedro.extras.datasets.pickle.PickleDataSet

class kedro.extras.datasets.pickle.PickleDataSet(filepath, backend='pickle', load_args=None, save_args=None, version=None, credentials=None, fs_args=None)[source]

PickleDataSet loads/saves data from/to a Pickle file using an underlying filesystem (e.g.: local, S3, GCS). The underlying functionality is supported by the pickle and joblib libraries, so it supports all allowed options for loading and saving pickle files.

Example:

from kedro.extras.datasets.pickle import PickleDataSet
import pandas as pd

data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5],
                     'col3': [5, 6]})

# data_set = PickleDataSet(filepath="gcs://bucket/test.pkl")
data_set = PickleDataSet(filepath="test.pkl", backend="pickle")
data_set.save(data)
reloaded = data_set.load()
assert data.equals(reloaded)

# Add "compress_pickle[lz4]" to requirements.txt
data_set = PickleDataSet(filepath="test.pickle.lz4",
                         backend="compress_pickle",
                         load_args={"compression":"lz4"},
                         save_args={"compression":"lz4"})
data_set.save(data)
reloaded = data_set.load()
assert data.equals(reloaded)

Attributes

BACKENDS

DEFAULT_LOAD_ARGS

DEFAULT_SAVE_ARGS

Methods

exists()

Checks whether a data set’s output already exists by calling the provided _exists() method.

from_config(name, config[, load_version, …])

Create a data set instance using the configuration provided.

load()

Loads data by delegation to the provided load method.

release()

Release any cached data.

resolve_load_version()

Compute the version the dataset should be loaded with.

resolve_save_version()

Compute the version the dataset should be saved with.

save(data)

Saves data by delegation to the provided save method.

BACKENDS = {'compress_pickle': <module 'compress_pickle' from '/home/docs/checkouts/readthedocs.org/user_builds/kedro/envs/latest/lib/python3.6/site-packages/compress_pickle/__init__.py'>, 'joblib': <module 'joblib' from '/home/docs/checkouts/readthedocs.org/user_builds/kedro/envs/latest/lib/python3.6/site-packages/joblib/__init__.py'>, 'pickle': <module 'pickle' from '/home/docs/.pyenv/versions/3.6.12/lib/python3.6/pickle.py'>}
DEFAULT_LOAD_ARGS: Dict[str, Any] = {}
DEFAULT_SAVE_ARGS: Dict[str, Any] = {}
__init__(filepath, backend='pickle', load_args=None, save_args=None, version=None, credentials=None, fs_args=None)[source]

Creates a new instance of PickleDataSet pointing to a concrete Pickle file on a specific filesystem. PickleDataSet supports two backends to serialize/deserialize objects: pickle and joblib.

Parameters
  • filepath (str) – Filepath in POSIX format to a Pickle file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported by fsspec. Note: http(s) doesn’t support versioning.

  • backend (str) – Backend to use, must be one of [‘pickle’, ‘joblib’]. Defaults to ‘pickle’.

  • load_args (Optional[Dict[str, Any]]) – Pickle options for loading pickle files. Here you can find all available arguments for different backends: pickle.load: https://docs.python.org/3/library/pickle.html#pickle.load joblib.load: https://joblib.readthedocs.io/en/latest/generated/joblib.load.html All defaults are preserved.

  • save_args (Optional[Dict[str, Any]]) – Pickle options for saving pickle files. Here you can find all available arguments for different backends: pickle.dump: https://docs.python.org/3/library/pickle.html#pickle.dump joblib.dump: https://joblib.readthedocs.io/en/latest/generated/joblib.dump.html All defaults are preserved.

  • version (Optional[Version]) – If specified, should be an instance of kedro.io.core.Version. If its load attribute is None, the latest version will be loaded. If its save attribute is None, save version will be autogenerated.

  • credentials (Optional[Dict[str, Any]]) – Credentials required to get access to the underlying filesystem. E.g. for GCSFileSystem it should look like {“token”: None}.

  • fs_args (Optional[Dict[str, Any]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} for GCSFileSystem), as well as to pass to the filesystem’s open method through nested keys open_args_load and open_args_save. Here you can find all available arguments for open: https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open All defaults are preserved, except mode, which is set to wb when saving.

Raises
  • ValueError – If backend is not one of [‘pickle’, ‘joblib’].

  • ImportError – If backend library could not be imported.

exists()

Checks whether a data set’s output already exists by calling the provided _exists() method.

Return type

bool

Returns

Flag indicating whether the output already exists.

Raises

DataSetError – when underlying exists method raises error.

classmethod from_config(name, config, load_version=None, save_version=None)

Create a data set instance using the configuration provided.

Parameters
  • name (str) – Data set name.

  • config (Dict[str, Any]) – Data set config dictionary.

  • load_version (Optional[str]) – Version string to be used for load operation if the data set is versioned. Has no effect on the data set if versioning was not enabled.

  • save_version (Optional[str]) – Version string to be used for save operation if the data set is versioned. Has no effect on the data set if versioning was not enabled.

Return type

AbstractDataSet

Returns

An instance of an AbstractDataSet subclass.

Raises

DataSetError – When the function fails to create the data set from its config.

load()

Loads data by delegation to the provided load method.

Return type

Any

Returns

Data returned by the provided load method.

Raises

DataSetError – When underlying load method raises error.

release()

Release any cached data.

Raises

DataSetError – when underlying release method raises error.

Return type

None

resolve_load_version()

Compute the version the dataset should be loaded with.

Return type

Optional[str]

resolve_save_version()

Compute the version the dataset should be saved with.

Return type

Optional[str]

save(data)

Saves data by delegation to the provided save method.

Parameters

data (Any) – the value to be saved by provided save method.

Raises
  • DataSetError – when underlying save method raises error.

  • FileNotFoundError – when save method got file instead of dir, on Windows.

  • NotADirectoryError – when save method got file instead of dir, on Unix.

Return type

None